pandas中的数据去重处理的实现方法-创新互联
数据去重可以使用duplicated()和drop_duplicates()两个方法。

DataFrame.duplicated(subset = None,keep =‘first' )返回boolean Series表示重复行
参数:
subset:列标签或标签序列,可选
仅考虑用于标识重复项的某些列,默认情况下使用所有列
keep:{‘first',‘last',False},默认'first'
- first:标记重复,True除了第一次出现。
- last:标记重复,True除了最后一次出现。
- 错误:将所有重复项标记为True。
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
df = pd.read_csv('./demo_duplicate.csv')
print(df)
print(df['Seqno'].unique()) # [0. 1.]
# 使用duplicated 查看 重复值
# 参数 keep 可以标记重复值 {'first','last',False}
print(df['Seqno'].duplicated())
'''
0 False
1 True
2 True
3 True
4 False
Name: Seqno, dtype: bool
'''
# 删除 series 重复数据
print(df['Seqno'].drop_duplicates())
'''
0 0.0
4 1.0
Name: Seqno, dtype: float64
'''
# 删除 dataframe 重复数据
print(df.drop_duplicates(['Seqno'])) # 按照 Seqno 来 去重
'''
Price Seqno Symbol time
0 1623.0 0.0 APPL 1473411962
4 1649.0 1.0 APPL 1473411963
'''
# drop_dujplicates() 第二个参数 keep 包含的值 有: first、last、False
print(df.drop_duplicates(['Seqno'], keep='last')) # 保存最后一个
'''
Price Seqno Symbol time
3 1623.0 0.0 APPL 1473411963
4 1649.0 1.0 APPL 1473411963
'''
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网站名称:pandas中的数据去重处理的实现方法-创新互联
标题路径:http://www.jxjierui.cn/article/pcdpd.html


咨询
建站咨询
