本篇内容介绍了“JDK1.8有什么新特性”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
公司主营业务:网站设计制作、成都做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联推出牡丹免费做网站回馈大家。
一、函数式接口
函数式接口(functional Interface),有且仅有一个抽象方法的接口,但可以有多个非抽象的方法。
适用于Lambda表达式使用的接口。如创建线程:
new Thread(() -> System.out.println(Thread.currentThread().getName())).start();
其中,Lambda表达式代替了new Runnable(),这里的Runable接口就属于函数式接口,最直观的体现是使用了 @FunctionalInterface注解,而且使用了一个抽象方法(有且仅有一个),如下:
package java.lang; /** * TheRunnableinterface should be implemented by any * class whose instances are intended to be executed by a thread. The * class must define a method of no arguments calledrun. ** This interface is designed to provide a common protocol for objects that * wish to execute code while they are active. For example, *
Runnableis implemented by classThread. * Being active simply means that a thread has been started and has not * yet been stopped. ** In addition,
Runnableprovides the means for a class to be * active while not subclassingThread. A class that implements *Runnablecan run without subclassingThread* by instantiating aThreadinstance and passing itself in * as the target. In most cases, theRunnableinterface should * be used if you are only planning to override therun()* method and no otherThreadmethods. * This is important because classes should not be subclassed * unless the programmer intends on modifying or enhancing the fundamental * behavior of the class. * * @author Arthur van Hoff * @see java.lang.Thread * @see java.util.concurrent.Callable * @since JDK1.0 */ @FunctionalInterface public interface Runnable { /** * When an object implementing interfaceRunnableis used * to create a thread, starting the thread causes the object's *runmethod to be called in that separately executing * thread. ** The general contract of the method
runis that it may * take any action whatsoever. * * @see java.lang.Thread#run() */ public abstract void run(); }
1. 格式
>修饰符 interface 接口名 { > > public abstract 返回值类型 方法名 (可选参数列表); > >}
注:public abstract可以省略(因为默认修饰为public abstract)
如:
public interface MyFunctionalInterface {
public abstract void method();
}2. 注解@FunctionalInterface
@FunctionalInterface,是JDK1.8中新引入的一个注解,专门指代函数式接口,用于一个接口的定义上。
和@Override注解的作用类似,@FunctionalInterface注解可以用来检测接口是否是函数式接口。如果是函数式接口,则编译成功,否则编译失败(接口中没有抽象方法或者抽象方法的个数多余1个)。
package com.xcbeyond.study.jdk8.functional;
/**
* 函数式接口
* @Auther: xcbeyond
* @Date: 2020/5/17 0017 0:26
*/
@FunctionalInterface
public interface MyFunctionalInterface {
public abstract void method();
// 如果存在多个抽象方法,则编译失败,即:@FunctionalInterface飘红
// public abstract void method1();
}3. 实例
函数式接口:
package com.xcbeyond.study.jdk8.functional;
/**
* 函数式接口
* @Auther: xcbeyond
* @Date: 2020/5/17 0017 0:26
*/
@FunctionalInterface
public interface MyFunctionalInterface {
public abstract void method();
// 如果存在多个抽象方法,则编译失败,即:@FunctionalInterface飘红
// public abstract void method1();
}测试:
package com.xcbeyond.study.jdk8.functional;
/**
* 测试函数式接口
* @Auther: xcbeyond
* @Date: 2020/5/17 0017 0:47
*/
public class MyFunctionalInterfaceTest {
public static void main(String[] args) {
// 调用show方法,参数中有函数式接口MyFunctionalInterface,所以可以使用Lambda表达式,来完成接口的实现
show("hello xcbeyond!", msg -> System.out.printf(msg));
}
/**
* 定义一个方法,参数使用函数式接口MyFunctionalInterface
* @param myFunctionalInterface
*/
public static void show(String message, MyFunctionalInterface myFunctionalInterface) {
myFunctionalInterface.method(message);
}
}函数式接口,用起来是不是更加的灵活,可以在具体调用处进行接口的实现。
函数式接口,可以很友好地支持Lambda表达式。
二、常用的函数式接口
在JDK1.8之前已经有了大量的函数式接口,最熟悉的就是java.lang.Runnable接口了。
JDK 1.8 之前已有的函数式接口:
java.lang.Runnablejava.util.concurrent.Callablejava.security.PrivilegedActionjava.util.Comparatorjava.io.FileFilterjava.nio.file.PathMatcherjava.lang.reflect.InvocationHandlerjava.beans.PropertyChangeListenerjava.awt.event.ActionListenerjavax.swing.event.ChangeListener
而在JDK1.8新增了java.util.function包下的很多函数式接口,用来支持Java的函数式编程,从而丰富了Lambda表达式的使用场景。
这里主要介绍四大核心函数式接口:
java.util.function.Consumer:消费型接口java.util.function.Supplier:供给型接口java.util.function.Predicate:断定型接口java.util.function.Function:函数型接口
1. Consumer接口
java.util.function.Consumer接口,是一个消费型的接口,消费数据类型由泛型决定。
package java.util.function;
import java.util.Objects;
/**
* Represents an operation that accepts a single input argument and returns no
* result. Unlike most other functional interfaces, {@code Consumer} is expected
* to operate via side-effects.
*
* This is a functional interface
* whose functional method is {@link #accept(Object)}.
*
* @param the type of the input to the operation
*
* @since 1.8
*/
@FunctionalInterface
public interface Consumer {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer andThen(Consumer after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
(1)抽象方法:accept
Consumer接口中的抽象方法void accept(T t),用于消费一个指定泛型T的数据。
举例如下:
/**
* 测试void accept(T t)
*/
@Test
public void acceptMethodTest() {
acceptMethod("xcbeyond", message -> {
// 完成字符串的处理,即:通过Consumer接口的accept方法进行对应数据类型(泛型)的消费
String reverse = new StringBuffer(message).reverse().toString();
System.out.printf(reverse);
});
}
/**
* 定义一个方法,用于消费message字符串
* @param message
* @param consumer
*/
public void acceptMethod(String message, Consumer consumer) {
consumer.accept(message);
} (2)方法:andThen
方法andThen,可以用来将多个Consumer接口连接到一起,完成数据消费。
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer andThen(Consumer after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
} 举例如下:
/** * 测试ConsumerandThen(Consumer after) * 输出结果: * XCBEYOND * xcbeyond */ @Test public void andThenMethodTest() { andThenMethod("XCbeyond", t -> { // 转换为大小输出 System.out.println(t.toUpperCase()); }, t -> { // 转换为小写输出 System.out.println(t.toLowerCase()); }); } /** * 定义一个方法,将两个Consumer接口连接到一起,进行消费 * @param message * @param consumer1 * @param consumer2 */ public void andThenMethod(String message, Consumer consumer1, Consumer consumer2) { consumer1.andThen(consumer2).accept(message); }
2. Supplier接口
java.util.function.Supplier接口,是一个供给型接口,即:生产型接口。只包含一个无参方法:T get(),用来获取一个泛型参数指定类型的数据。
package java.util.function; /** * Represents a supplier of results. * *There is no requirement that a new or distinct result be returned each * time the supplier is invoked. * *
This is a functional interface * whose functional method is {@link #get()}. * * @param
the type of results supplied by this supplier * * @since 1.8 */ @FunctionalInterface public interface Supplier { /** * Gets a result. * * @return a result */ T get(); }
举例如下:
@Test
public void test() {
String str = getMethod(() -> "hello world!");
System.out.println(str);
}
public String getMethod(Supplier supplier) {
return supplier.get();
} 3. Predicate接口
java.util.function.Predicate接口,是一个断定型接口,用于对指定类型的数据进行判断,从而得到一个判断结果(boolean类型的值)。
package java.util.function; import java.util.Objects; /** * Represents a predicate (boolean-valued function) of one argument. * *This is a functional interface * whose functional method is {@link #test(Object)}. * * @param
the type of the input to the predicate * * @since 1.8 */ @FunctionalInterface public interface Predicate { /** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t); /** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * * Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate
and(Predicate other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } /** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicate negate() { return (t) -> !test(t); } /** * Returns a composed predicate that represents a short-circuiting logical * OR of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * * Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ORed with this * predicate * @return a composed predicate that represents the short-circuiting logical * OR of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate
or(Predicate other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); } /** * Returns a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)}. * * @param the type of arguments to the predicate * @param targetRef the object reference with which to compare for equality, * which may be {@code null} * @return a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)} */ static Predicate isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); } }
(1)抽象方法:test
抽象方法boolean test(T t),用于条件判断。
/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);举例如下:
/**
* 测试boolean test(T t);
*/
@Test
public void testMethodTest() {
String str = "xcbey0nd";
boolean result = testMethod(str, s -> s.equals("xcbeyond"));
System.out.println(result);
}
/**
* 定义一个方法,用于字符串的判断。
* @param str
* @param predicate
* @return
*/
public boolean testMethod(String str, Predicate predicate) {
return predicate.test(str);
}(2)方法:and
方法Predicate,用于将两个Predicate进行逻辑”与“判断。
/**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate and(Predicate other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
(3)方法:negate
方法Predicate,用于取反判断。
/** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicatenegate() { return (t) -> !test(t); }
(4)方法:or
方法Predicate,用于两个Predicate的逻辑”或“判断。
/**
* Returns a composed predicate that represents a short-circuiting logical
* OR of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code true}, then the {@code other}
* predicate is not evaluated.
*
* Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ORed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* OR of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate or(Predicate other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
4. Function接口
java.util.function.Function接口,是一个函数型接口,用来根据一个类型的数据得到另外一个类型的数据。
package java.util.function; import java.util.Objects; /** * Represents a function that accepts one argument and produces a result. * *This is a functional interface * whose functional method is {@link #apply(Object)}. * * @param
the type of the input to the function * @param the type of the result of the function * * @since 1.8 */ @FunctionalInterface public interface Function { /** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t); /** * Returns a composed function that first applies the {@code before} * function to its input, and then applies this function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param the type of input to the {@code before} function, and to the * composed function * @param before the function to apply before this function is applied * @return a composed function that first applies the {@code before} * function and then applies this function * @throws NullPointerException if before is null * * @see #andThen(Function) */ default Function compose(Function before) { Objects.requireNonNull(before); return (V v) -> apply(before.apply(v)); } /** * Returns a composed function that first applies this function to * its input, and then applies the {@code after} function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param the type of output of the {@code after} function, and of the * composed function * @param after the function to apply after this function is applied * @return a composed function that first applies this function and then * applies the {@code after} function * @throws NullPointerException if after is null * * @see #compose(Function) */ default Function andThen(Function after) { Objects.requireNonNull(after); return (T t) -> after.apply(apply(t)); } /** * Returns a function that always returns its input argument. * * @param the type of the input and output objects to the function * @return a function that always returns its input argument */ static Function identity() { return t -> t; } }
(1)抽象方法:apply
抽象方法R apply(T t),根据类型T的参数获取类型R的结果。
/** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t);
举例如下:
/**
* 测试R apply(T t),完成字符串整数的转换
*/
@Test
public void applyMethodTest() {
// 字符串类型的整数
String numStr = "123456";
Integer num = applyMethod(numStr, n -> Integer.parseInt(n));
System.out.println(num);
}
public Integer applyMethod(String str, Function function) {
return function.apply(str);
} (2)方法:compose
方法,获取apply的function。
/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default Function compose(Function before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
} (3)方法:andThen
方法,用来进行组合操作,即:”先做什么,再做什么“的场景。
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default Function andThen(Function after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
} 三、函数式编程
函数式编程并不是Java提出的新概念,它将计算机运算看作是函数的计算。函数式编程最重要的基础是λ演算,而且λ演算的函数是可以接受函数当作输入(参数)和输出(返回值)的。
和指令式编程相比,函数式编程强调函数的计算比指令的执行重要。
和过程化编程相比,函数式编程里函数的计算可随时调用。
当然,Java大家都知道是面向对象的编程语言,一切都是基于对象的特性(抽象、封装、继承、多态)。在JDK1.8出现之前,我们关注的往往是某一对象应该具有什么样的属性,当然这也就是面向对象的核心——对数据进行抽象。但JDK1.8出现以后,这一点开始出现变化,似乎在某种场景下,更加关注某一类共有的行为(有点类似接口),这也就是JDK1.8提出函数式编程的目的。如下图所示,展示了面向对象编程到函数式编程的变化。

Lambda表达式就是更好的体现了函数式编程,而为了支持Lambda表达式,才有了函数式接口。
另外,为了在面对大型数据集合时,为了能够更加高效的开发,编写的代码更加易于维护,更加容易运行在多核CPU上,java在语言层面增加了Lambda表达式。在上一节中,我们已经知道Lambda表达式是多么的好用了 。
在JDK1.8中,函数式编程随处可见,在你使用过程中简直很爽,例如:Stream流。
函数式编程的优点,也很多,如下:
1. 代码简洁,开发快速
函数式编程大量使用函数,减少了代码的重复,因此程序比较短,开发速度较快。
2. 接近自然语言,易于理解
函数式编程的自由度很高,可以写出很接近自然语言的代码。
例如,两数只差,可以写成(x, y) -> x – y
3. 更方便的代码管理
函数式编程不依赖、也不会改变外界的状态,只要给定输入参数,返回的结果必定相同。因此,每一个函数都可以被看做独立单元,很有利于进行单元测试(unit testing)和除错(debugging),以及模块化组合。
4. 易于"并发编程"
函数式编程不需要考虑"死锁",因为它不修改变量,所以根本不存在"锁"线程的问题。不必担心一个线程的数据,被另一个线程修改,所以可以很放心地把工作分摊到多个线程,部署"并发编程"。
5. 代码的热升级
函数式编程没有副作用,只要保证接口不变,内部实现是外部无关的。所以,可以在运行状态下直接升级代码,不需要重启,也不需要停机。
四、总结
在JDK1.8中,函数式接口/编程将会随处可见,也有有助于你更好的理解JDK1.8中的一些新特性。关于函数式接口,在接下来具体特性、用法中将会体现的淋漓尽致。
JDK1.8提出的函数式接口,你是否赞同呢?
“JDK1.8有什么新特性”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
网站名称:JDK1.8有什么新特性
转载来于:http://www.jxjierui.cn/article/iigssi.html


咨询
建站咨询
