这期内容当中小编将会给大家带来有关ApacheFlink中Flink数据流编程是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

目前累计服务客户上1000+,积累了丰富的产品开发及服务经验。以网站设计水平和技术实力,树立企业形象,为客户提供成都网站设计、网站制作、网站策划、网页设计、网络营销、VI设计、网站改版、漏洞修补等服务。成都创新互联公司始终以务实、诚信为根本,不断创新和提高建站品质,通过对领先技术的掌握、对创意设计的研究、对客户形象的视觉传递、对应用系统的结合,为客户提供更好的一站式互联网解决方案,携手广大客户,共同发展进步。
数据源可以通过StreamExecutionEnvironment.addSource(sourceFunction)方式来创建,Flink也提供了一些内置的数据源方便使用,例如readTextFile(path) readFile(),当然,也可以写一个自定义的数据源(可以通过实现SourceFunction方法,但是无法并行执行。或者实现可以并行实现的接口ParallelSourceFunction或者继承RichParallelSourceFunction)
入门
首先做一个简单入门,建立一个DataStreamSourceApp
Scala
object DataStreamSourceApp {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
socketFunction(env)
env.execute("DataStreamSourceApp")
}
def socketFunction(env: StreamExecutionEnvironment): Unit = {
val data=env.socketTextStream("192.168.152.45", 9999)
data.print()
}
}这个方法将会从socket中读取数据,因此我们需要在192.168.152.45中开启服务:
nc -lk 9999
然后运行DataStreamSourceApp,在服务器上输入:
iie4bu@swarm-manager:~$ nc -lk 9999 apache flink spark
在控制台中也会输出:
3> apache 4> flink 1> spark
前面的 341表示的是并行度。可以通过设置setParallelism来操作:
data.print().setParallelism(1)
Java
public class JavaDataStreamSourceApp {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
socketFunction(environment);
environment.execute("JavaDataStreamSourceApp");
}
public static void socketFunction(StreamExecutionEnvironment executionEnvironment){
DataStreamSource data = executionEnvironment.socketTextStream("192.168.152.45", 9999);
data.print().setParallelism(1);
}
} 自定义添加数据源方式
Scala
实现SourceFunction接口
这种方式不能并行处理。
新建一个自定义数据源
class CustomNonParallelSourceFunction extends SourceFunction[Long]{
var count=1L
var isRunning = true
override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
while (isRunning){
ctx.collect(count)
count+=1
Thread.sleep(1000)
}
}
override def cancel(): Unit = {
isRunning = false
}
}这个方法首先定义一个初始值count=1L,然后执行的run方法,方法主要是输出count,并且执行加一操作,当执行cancel方法时结束。调用方法如下:
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// socketFunction(env)
nonParallelSourceFunction(env)
env.execute("DataStreamSourceApp")
}
def nonParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
val data=env.addSource(new CustomNonParallelSourceFunction())
data.print()
}输出结果就是控制台一直输出count值。
无法设置并行度,除非设置并行度是1.
val data=env.addSource(new CustomNonParallelSourceFunction()).setParallelism(3)
那么控制台报错:
Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55) at com.vincent.course05.DataStreamSourceApp$.nonParallelSourceFunction(DataStreamSourceApp.scala:16) at com.vincent.course05.DataStreamSourceApp$.main(DataStreamSourceApp.scala:11) at com.vincent.course05.DataStreamSourceApp.main(DataStreamSourceApp.scala)
继承ParallelSourceFunction方法
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}
class CustomParallelSourceFunction extends ParallelSourceFunction[Long]{
var isRunning = true
var count = 1L
override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
while(isRunning){
ctx.collect(count)
count+=1
Thread.sleep(1000)
}
}
override def cancel(): Unit = {
isRunning=false
}
}方法的功能跟上面是一样的。main方法如下:
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// socketFunction(env)
// nonParallelSourceFunction(env)
parallelSourceFunction(env)
env.execute("DataStreamSourceApp")
}
def parallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
val data=env.addSource(new CustomParallelSourceFunction()).setParallelism(3)
data.print()
}可以设置并行度3,输出结果如下:
2> 1 1> 1 2> 1 2> 2 3> 2 3> 2 3> 3 4> 3 4> 3
继承RichParallelSourceFunction方法
class CustomRichParallelSourceFunction extends RichParallelSourceFunction[Long] {
var isRunning = true
var count = 1L
override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
while (isRunning) {
ctx.collect(count)
count += 1
Thread.sleep(1000)
}
}
override def cancel(): Unit = {
isRunning = false
}
} def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// socketFunction(env)
// nonParallelSourceFunction(env)
// parallelSourceFunction(env)
richParallelSourceFunction(env)
env.execute("DataStreamSourceApp")
}
def richParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {
val data = env.addSource(new CustomRichParallelSourceFunction()).setParallelism(3)
data.print()
}Java
实现SourceFunction接口
import org.apache.flink.streaming.api.functions.source.SourceFunction; public class JavaCustomNonParallelSourceFunction implements SourceFunction{ boolean isRunning = true; long count = 1; @Override public void run(SourceFunction.SourceContext ctx) throws Exception { while (isRunning) { ctx.collect(count); count+=1; Thread.sleep(1000); } } @Override public void cancel() { isRunning=false; } }
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
// socketFunction(environment);
nonParallelSourceFunction(environment);
environment.execute("JavaDataStreamSourceApp");
}
public static void nonParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction());
data.print().setParallelism(1);
}当设置并行度时:
DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction()).setParallelism(2);
那么报错异常:
Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55) at com.vincent.course05.JavaDataStreamSourceApp.nonParallelSourceFunction(JavaDataStreamSourceApp.java:16) at com.vincent.course05.JavaDataStreamSourceApp.main(JavaDataStreamSourceApp.java:10)
实现ParallelSourceFunction接口
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction; public class JavaCustomParallelSourceFunction implements ParallelSourceFunction{ boolean isRunning = true; long count = 1; @Override public void run(SourceContext ctx) throws Exception { while (isRunning) { ctx.collect(count); count+=1; Thread.sleep(1000); } } @Override public void cancel() { isRunning=false; } }
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
// socketFunction(environment);
// nonParallelSourceFunction(environment);
parallelSourceFunction(environment);
environment.execute("JavaDataStreamSourceApp");
}
public static void parallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
DataStreamSource data = executionEnvironment.addSource(new JavaCustomParallelSourceFunction()).setParallelism(2);
data.print().setParallelism(1);
}可以设置并行度,输出结果:
1 1 2 2 3 3 4 4 5 5
继承抽象类RichParallelSourceFunction
public class JavaCustomRichParallelSourceFunction extends RichParallelSourceFunction{ boolean isRunning = true; long count = 1; @Override public void run(SourceContext ctx) throws Exception { while (isRunning) { ctx.collect(count); count+=1; Thread.sleep(1000); } } @Override public void cancel() { isRunning=false; } }
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
// socketFunction(environment);
// nonParallelSourceFunction(environment);
// parallelSourceFunction(environment);
richpParallelSourceFunction(environment);
environment.execute("JavaDataStreamSourceApp");
}
public static void richpParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){
DataStreamSource data = executionEnvironment.addSource(new JavaCustomRichParallelSourceFunction()).setParallelism(2);
data.print().setParallelism(1);
}输出结果:
1 1 2 2 3 3 4 4 5 5 6 6
SourceFunction ParallelSourceFunction RichParallelSourceFunction类之间的关系
上述就是小编为大家分享的ApacheFlink中Flink数据流编程是怎样的了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联行业资讯频道。
网站题目:ApacheFlink中Flink数据流编程是怎样的
URL分享:http://www.jxjierui.cn/article/gigcjs.html


咨询
建站咨询
