PythonPandas分组聚合的实现方法-创新互联
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数。

apply(),applymap()和map()
apply()和applymap()是DataFrame的函数,map()是Series的函数。
apply()的操作对象是DataFrame的一行或者一列数据,applymap()是DataFrame的每一个元素。map()也是Series中的每一个元素。
apply()对dataframe的内容进行批量处理, 这样要比循环来得快。如df.apply(func,axis=0,.....) func:定义的函数,axis=0时为对列操作,=1时为对行操作。
map()和python内建的没啥区别,如df['one'].map(sqrt)。
import numpy as np
from pandas import Series, DataFrame
frame = DataFrame(np.random.randn(4, 3),
columns = list('bde'),
index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print frame
print np.abs(frame)
print
f = lambda x: x.max() - x.min()
print frame.apply(f)
print frame.apply(f, axis = 1)
def f(x):
return Series([x.min(), x.max()], index = ['min', 'max'])
print frame.apply(f)
print
print 'applymap和map'
_format = lambda x: '%.2f' % x
print frame.applymap(_format)
print frame['e'].map(_format)
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
新闻标题:PythonPandas分组聚合的实现方法-创新互联
文章网址:http://www.jxjierui.cn/article/dseise.html


咨询
建站咨询
