pandas如何实现机器学习的knn算法-创新互联
这篇文章主要为大家展示了“pandas如何实现机器学习的knn算法”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pandas如何实现机器学习的knn算法”这篇文章吧。

具体内容如下
# coding: gbk import pandas as pd import numpy as np def getdata(path): data = pd.read_csv(path, header=None, sep='\t') character = data.iloc[:, :-1] label = data.iloc[:, -1] chara_max = character.max() chara_min = character.min() chara_range = chara_max - chara_min normal_chara = (character - chara_min) / chara_range return normal_chara, label # 获得归一化特征值和标记 def knn(inX, normal_chara, label, k): data_sub = normal_chara - inX data_square = data_sub.applymap(np.square) data_sum = data_square.sum(axis=1) data_sqrt = data_sum.map(np.sqrt) dis_sort = data_sqrt.argsort() k_label = label[dis_sort[:k]] label_sort = k_label.value_counts() res_label = label_sort.index[0] return res_label # knn算法分类
机器学习--KNN基本实现
# _*_ coding _*_
import numpy as np
import math
import operator
def get_data(dataset):
x = dataset[:,:-1].astype(np.float)
y = dataset[:,-1]
return x,y
# def cal_dis(a,b):
# x1,y1 = a[:]
# x2,y2 = b[:]
# dist = math.sqrt(math.pow(2,x2)-math.pow(2,x1))
def knnclassifer(dataset,predict,k=3):
x,y = get_data(dataset)
dic = {}
distince = np.sum((predict-x)**2,axis=1)**0.5
sorted_dict = np.argsort(distince)#[2 1 0 3 4]
countLabel = {}
for i in range(k):
label = y[sorted_dict[i]]
# print(i,sorted_dict[i],label)
countLabel[label] = countLabel.get(label,0)+1
new_dic = sorted(countLabel,key=operator.itemgetter(0),reverse=True)
return new_dic[0][0]
if __name__ == '__main__':
dataset = np.loadtxt("dataset.txt",dtype=np.str,delimiter=",")
predict = [2,2]
label = knnclassifer(dataset,predict,3)
print(label)以上是“pandas如何实现机器学习的knn算法”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
分享文章:pandas如何实现机器学习的knn算法-创新互联
标题网址:http://www.jxjierui.cn/article/dpjejs.html


咨询
建站咨询
