在python中利用最小二乘拟合二次抛物线函数的方法-创新互联
1、最小二乘也可以拟合二次函数

我们都知道用最小二乘拟合线性函数没有问题,那么能不能拟合二次函数甚至更高次的函数呢?答案当然是可以的。下面我们就来试试用最小二乘来拟合抛物线形状的的图像。
对于二次函数来说,一般形状为 f(x) = a*x*x+b*x+c,其中a,b,c为三个我们需要求解的参数。为了确定a、b、c,我们需要根据给定的样本,然后通过调整这些参数,知道最后找出一组参数a、b、c,使这些所有的样本点距离f(x)的距离平方和最小。用什么方法来调整这些参数呢?最常见的自然就是我们的梯度下降喽。
spicy库中有名为leastsq的方法,只需要输入一系列样本点,给出待求函数的基本形状,就可以针对上述问题求解了。
2、抛物线拟合源码
#!/usr/bin/env python
# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
# 待拟合的数据
X = np.array([1,2,3,4,5,6])
Y=np.array([9.1,18.3,32,47,69.5,94.8])
# 二次函数的标准形式
def func(params, x):
a, b, c = params
return a * x * x + b * x + c
# 误差函数,即拟合曲线所求的值与实际值的差
def error(params, x, y):
return func(params, x) - y
# 对参数求解
def slovePara():
p0 = [10, 10, 10]
Para = leastsq(error, p0, args=(X, Y))
return Para
# 输出最后的结果
def solution():
Para = slovePara()
a, b, c = Para[0]
print "a=",a," b=",b," c=",c
print "cost:" + str(Para[1])
print "求解的曲线是:"
print("y="+str(round(a,2))+"x*x+"+str(round(b,2))+"x+"+str(c))
plt.figure(figsize=(8,6))
plt.scatter(X, Y, color="green", label="sample data", linewidth=2)
# 画拟合直线
x=np.linspace(0,12,100) ##在0-15直接画100个连续点
y=a*x*x+b*x+c ##函数式
plt.plot(x,y,color="red",label="solution line",linewidth=2)
plt.legend() #绘制图例
plt.show()
solution()
名称栏目:在python中利用最小二乘拟合二次抛物线函数的方法-创新互联
新闻来源:http://www.jxjierui.cn/article/dgcidj.html


咨询
建站咨询
